Collider-Accelerator Department Overview

Presented to

RHIC Facility Annual Science and Technology Review

Derek I. Lowenstein July 6, 2005

COLLIDER-ACCELERATOR DEPARTMENT

Circa June 2005

<u>Mission</u>: "To develop, improve and operate the suite of particle/heavy ion accelerators used to carry out the program of accelerator-based experiments at BNL; support of the experimental program including design, construction and operation of the beam transports to the experiments, plus support of detector and research needs of the experiments; to design and construct new accelerator facilities in support of the BNL and national missions. The C-A Department supports an international user community of ov er 1500 scientists. The Department performs all these functions in an environmentally responsible and safe manner under a rigorous conduct of operations approach."

Staff: The Collider-Accelerator Department headcount is:

	<u>Total</u>	<u>NP</u> *	<u>SNS</u>	<u>NASA</u>	<u>Other</u>
Ph.D. Scientists	49	48	0	1	0
Postdoctoral Fellows	3	3	0	0	0
Engineers/Professional	132	126	0	4	2
Designers/Technicians	186	175	0	7	4
Admin./Clerical	<u> 19</u>	<u> 17</u>	_0	_2	_0
Totals	389	369	0	14	6

SNS Project ended as of March 31, 2005; 25 FTEs charged in FY 2005.

*Does not include ~26 Magnet Division employees charged to NP.

Additional support ~13 FTEs are purchased as Laboratory assigned trades.

Facilities: Principal facilities of the Collider-Accelerator Department comprise

Tandems (2), Linac, Booster, AGS, RHIC (2)

640,000 ft.² accelerator areas

140,000 ft.² experimental areas

173,000 ft.² general office/laboratory space

149,000 ft.² high-bay work space

87,000 ft.² storage/materials handling space

Research Library and 190 seat auditorium

Collider - Accelerator Department

(Programmatic Heads 415)*

* Reflects Head data circa June 2005

FY05 Awards & Publications

FY2005 Awards

- NASA NSRL Recognition Award D. Lowenstein and A. McNerney, November 2004
- 2005 IEEE-NPSS Particle Accelerator Science and Technology Award
 T. Roser, May 2005
- BNL Environmental Stewardship Award J. Scott, April 2005
- Russian Academy of Sciences Nuclear Physics Research Award D. Kayran, April 2005

FY2005 Publications and invited talks (to date)

- 188 publications
 - o 22 journal, 11 refereed
 - o 155 conference proceedings
 - o 11 reports
- ~10 invited talks

Funding: FY 2005 (\$M to date)

	DOE				
Fund Type	<u>NP</u>	<u>SNS</u>	<u>NASA</u>	<u>Other</u>	<u>Totals</u>
Operating	100.6	0.0	5.0	2.9	108.5
Equipment	1.5	0.0	0.0	0.0	1.5
Construction/AIP	<u>3.1</u>	<u>5.4</u>	0.0	0.0	8.5
Totals	105.2	5.4	5.0	2.9	118.5

C-AD ES&H Performance Indicators

	2004	2005
Whole-Body Collective Dose (person-rem) ²	5.28	~2.0
Skin and Clothing Contaminations	0	0
Internal Contamination	0	0
Radioactive/Hazardous Materials Overexposures	0	0
Days Away and Restricted Day Rate (# per 100 FTEs)	1.7	0.66
1.Cases	7	1
1.Total Hours Worked in Year (1000s)	826	~359
Recordable Injury/Illness Rate (# per 100 FTEs)	2.9	1.31
1.Cases	12	2
First Aid Cases Excluding Athletic Injuries	5	1
Unplanned Safety Function Actuations	0	0
Violations of Operating Procedures	0	0
Unplanned Shutdowns	0	0
Occurrences	7	2
Environmental Related Occurrences	0	0
Solid Low-Level Waste Shipped		
1.Radioactive Waste (cu-ft)	2400	3566
1.Hazardous Waste (cu-ft) ³	200	8.2
1.Mixed Waste (cu-ft) ³	35	181
1.Industrial Waste (cu-ft) ³	700	143

2005 C-AD Reportable Ocurrences

2005, Employee Falls While Walking
2005, Slip and Fall Results in Hairline
Fracture of Kneecap

FY2006 Budget Issues:

President's budget was a disaster. Congressional budget greatly improved. What will Congress ultimately provide after the rescissions?

- **DOE unfunded infrastructure mandate** forces increased space charge rate at 9.8% each year from FY05-FY07
 - Increased space charge reduces available operating funds by \$1M in FY2006, on top of the \$1M in FY2005
 - SNS manpower has been a shared resource with the RHIC program. 65 FTE reduction in FY2005 completed. No longer available to support NP.
 - Reduced SMD manpower support to 26 FTE from 35 FTE
- New NYPA power rates go into effect in July 2005.
- Average power rate expected to be \$65 / MWH, up from \$55 / MWH
- e-cooling grow to \$3M to keep on schedule. (see Ben-Zvi talk)

C-AD Program Areas

RHIC

- · Heavy Ion (DOE-NP).
- Polarized Proton (DOE-NP).

AGS

• Radiobiology (NASA, conjunction with NSRL).

Tandem

• Commercial Users (\$1M yearly sales).

Linac

• Isotope Production (DOE-NE, *problematic, parasitic on linac operations*).

Booster

NASA Space Radiation Laboratory (NASA, \$5.5M/year, incl. \$2M for Medical and Biology Departments).

C-AD Program Areas

Projects

- Spallation Neutron Source (DOE-BES, completed, \$118M)
 - Accumulator ring and beam lines: delivered on schedule, below estimated cost
- Electron Beam Ionization Source injector (DOE-NP + NASA, CD1 under preparation,\$19M)
- RSVP (NSF HEP, \$50M construction,\$12M/year ops).
 - Decision expected mid-August
- NSRL facility expansion (under discussion)
- Neutrino proposal (DOE HEP under development)
- Hadron therapy facility, interest from several sources, but no funding yet

EBIS Project

Joint DOE and NASA Project

Replace Tandems

- Improved beam intensity
- Allow for masses to uranium and noble gases
- Lower operating costs

First step in project approved by DOE

CD0; Mission Need

Second step, CD1, is underway

• DOE CD1 technical, cost and schedule base-line review (7/25-27)

NASA has agreed to support \$4.5M of cost

• First funds have arrived at BNL

~\$19M to build EBIS, RFQ and Linac

Commissioning in FY2009

RHIC EBIS Injector Layout

C-AD Program Areas

R&D

- electron-cooling of ions(DOE NP, BNL PDF, US Navy, AES, JLab). See Ilan Ben-Zvi presentation
 - · Significant physics understanding over the past year
 - · US Navy interest in 100 KW FEL
 - ERL linac could be used for cooling
- stochastic cooling of RHIC ions
 - Beam studies continue, first indications that cooling will work
- eRHIC design (MIT-Bates, Novosibirsk)
 - · ZDR completed, 2 designs under consideration
- Polarized He3 source
 - Expect MIT-Bates, Caltech groups to submit R&D proposal

RHIC Performance

RHIC: unlike any other collider

- 1. Greater operational flexibility than other hadron colliders
 - Variation in particle species, also asymmetric
 - → So far Au+Au, d+Au, p+p, Cu +Cu
 - Variation in energy
 - → Au+Au at 11, 31, 66, 100 GeV/u
 - → Cu+Cu 11, 31, 100 GeV/u
 - \rightarrow p\+p\ at 100, 205 GeV
 - Variation in lattice
 - \rightarrow Low β^* in most cases (.85-3 m)
 - \rightarrow Large β^* for small angle scattering experiments (>10 m)
 - → Polarity change in some experimental magnets
 - Variation bunch to bunch polarization patterns
- 2. Four experiments (2 large, 2 small), different preferences
 - Need to avoid that any one experiment becomes bottleneck
- 3. Short runs (~30 weeks/year), with multiple modes
 - Significant amount of set-up time required
- Short luminosity lifetime with heavy ions (~ few hours)
 - Fast refills essential

RHIC nucleon-pair luminosity delivered to PHENIX

RHIC design and achieved parameters

Mode	No of bunches	Ions/bunch [10 ⁹]	β* [m]	Beam pol.	L _{store ave} [cm ⁻² s ⁻¹]	A ₁ A ₂ L _{store ave} [cm ⁻² s ⁻¹]	A ₁ A ₂ L _{peak} [cm ⁻² s ⁻¹]
			Desig	gn values (19	99)		
Au – Au	56	1.0	2		2×10^{26}	8×10 ³⁰	31×10^{30}
$\mathbf{p} - \mathbf{p}$	56	100	2		4×10^{30}	4×10^{30}	5×10 ³⁰
		A	Achieved	values (up t	to 2005)		
Au – Au	45	1.1	1		4×10^{26}	16×10^{30} (2)	58×10^{30}
d – Au	55	120/0.7	2		3×10 ²⁸	6×10^{30}	24×10^{30}
Cu – Cu	36	4.5	1		80×10^{26}	32×10^{30}	79×10^{30}
$\mathbf{p} \uparrow - \mathbf{p} \uparrow$	106	90	1	48%	8×10 ³⁰	8×10 ³⁰	10×10^{30}
$\mathbf{p} - \mathbf{p}$	56	170	1		10×10^{30}	$10 \times 10^{30} (2.5)$	15×10^{30}

Other high luminosity hadron colliders:

$$\mathbf{L} = \frac{3f_{rev}\gamma}{2} \frac{N_B N^2}{\varepsilon \beta^*}$$

	achieved	goal	scaled to 200 GeV
Tevatron (2 TeV)	128×10^{30}	200×10^{30}	20×10^{30}
LHC (14 TeV)		10000×10^{30}	140×10^{30}

Hours at store - low energy Cu

RHIC Run5 System Failures as a fraction of the Total 694 failure hours

■ PreInjector ■AGS_MMPS ■ AGSRingFEBeqpt ■ Polarimeters □ Controls ■ OperatorError ■ RHICBlueCorrPS **■**RHICYelloCorrPS ■ ATR/WXYelements ■ LinacRF ■AGS RF AccessControls ■ ES&FD/Experiment RHICBlueRF RHICYelloRF ■ QuenchProtectionAssembly ServicesElectrical **■ QUENCHLINK QUENCH** ■ BoosterExtraction AGSMainMagnet ■ ServicesWater ■ RadaitionInterlock ■ EnvironmentSafety&Health CRYOGENIC

Availability (all) = 84.7% Cu-Cu = 83.7% p-p = 85.9%

■ RHICYelloVacuum

■ RHICAbortSystem
■ Sum of Failures < 1%

Cu-Cu overall results-see Todd Satogata presentation

- Delivered 15 nb⁻¹ in the 100 GeV/u run, more than twice the goal of 7 nb⁻¹
- Exceeded maximum luminosity projections
- Set&ramp-up time with beam 2.5 weeks (4 weeks planned)
- All experiments had a successful run
- Successful 2 weeks at 31.2 Gev/u, set-up 2 days
- Successful 1 day run at injection 11 GeV/u

Integrated luminosity 100 GeV/u

calendar
time at store:
52%

Cu-cu cross section measured at 2.6 barn

Integrated luminosity 31.2 GeV run

RHIC Run 5 (62 GeV) Delivered Cu-Cu Luminosity

Days into the run (to 03/22/05)

31.2 GeV / u Run - week 2 - stores

100 GeV/u Cu-Cu time between stores

RHIC Run 5 (100x100 Cu) Time Between Physics Stores

31.2 GeV / u store-to-store time

RHIC pp -see Mei Bai presentation

100 GeV/u for experiments STAR, PHENIX and BRAHMS

- Greatly improved luminosity and polarization performance
- Provided both longitudinal and transverse polarized beam
- Superconducting partial Siberian Snake in AGS was commissioned and expected to be used in Run 6
 - Open questions will be studied during next run
- Successfully accelerated/collided 111x111 bunches @ .75 x 10^{11} per bunch from the previous 56 x 56 @ .75 x 10^{11} per bunch

Beyond 100 GeV/u

- Beams were accelerated and collided at 205 GeV/u as a test
 - 30% polarization immediately measured in both rings at 205 GeV/u

New AGS helical snakes

6 % helical snake built at Tokana Industries Funded by RIKEN.

➤ Warm snake avoids polarization mismatch at AGS injection and extraction.

Cold strong snake eliminates all depolarizing resonances in AGS.

RHIC pp figure of merit (P_B²P_Y²L) delivered

FY2005 RHIC operations was again outstanding

Additional Material

Cu-Cu Luminosity / week

